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Abstract. This article is devoted to a significant role of matrices in digital signal processing, systems of artificial intelligence and mathematical natural sciences in the whole. The study of the world of matrices is going on intensively all over the world and constantly brings useful and unexpected results. Some of these results are presented in this paper. Special attention is paid to Hadamard matrices and some their modifications and extensions, which are important for developing systems of artificial intelligence and studying the genetic code. Training courses for specialists in many fields of science should be constantly updated with new knowledge about matrices and their practical applications.
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1. Introduction
Digital technologies of artificial intelligence and noise-immune coding of information are created on the basis of mathematics, where special kinds of matrices play a significant role. This article is devoted to matrices, which are used in these technologies or have a perspective to be used there and which are explored in education of appropriate specialists. For example, Hadamard matrices, which are considered below together with their modifications and extensions, play an important role in the spectral logic, noise-immune coding, quantum mechanics, quantum computers, spectral analysis, etc. Some of these matrices are applied in bioinformatics to study noise-immune properties of the genetic code systems [1, 2]. 
Scientists try to reproduce in devices of artificial intelligence intellectual properties of living organisms, which are connected with the genetic code system. For example, a spider possesses its inherited intellectual ability to weave its spider web using up to 7 kinds of filaments arranged in a certain order inside its spider web, which is tied to random external supports. Matrix-algebraic analysis of the molecular-genetic system with its structured DNA-alphabets (4 nitrogenous bases, 16 doublets and 64 triplets) has allowed argumentum the concept of the geno-logical coding, which exists in parallel with the known genetic code of amino acid sequences in proteins, but which serves for transferring inherited processes along chains of generations. Simultaneously the matrix-algebraic analysis has revealed a connection of genetic alphabets with matrix formalisms of resonances in oscillatory systems with many degrees of freedom. Theory of matrices is a well-known part of control system theory that is an important part of Artificial Intelligent System (AIS) theory. Theories of mechanical movements use effective matrix models reflecting resonance points. In common observation AIS is connected with theme of very different resonances, all of it can be observed by formal way in the corresponding frames of rich models of matrix theory [3-5]. Different kinds of matrices are used in biometric person identification systems, web video object mining and in many other modern practical tasks [6-8].
Let us note that matrix by itself is one of the mysterious educational objects of the two previous centuries. Being quite bigger than vector, matrix consists in itself features of complex numbers (model of rich data) and, the same time, operators (model of system). Being born in the middle of century XIX, matrices were postulated and determined in many areas of mathematician science due the famous conjectures and inequalities, such as Hadamard conjecture estimated as “Fermat theorem” for combinatorial theme, Ryser matrix conjecture dedicated to the ornamental theme, Hadamard inequality, etc. [7-11]. Complex and hypercomplex numbers possess matrix forms of their representations. In computers information is usually stores in the form of matrices. The significance of matrix approach is emphasized by the fact that quantum mechanics has arisen in a form of matrix mechanics of Heisenberg, which has introduced matrices into the field of mathematical natural sciences, where they became now one of the most important mathematical tools. 

Any living organism is a great chorus of coordinated oscillatory (also called vibrational) processes (mechanical, electrical, piezoelectric, biochemical, etc.), which are connected with their genetic inheritance along chains of generations. All living organisms are identical from the point of view of the molecular foundations of genetic coding of sequences of amino acids in proteins. This coding is based on molecules of DNA and RNA. From a formal point of view, a living organism is an oscillatory system with a large number of degrees of freedom. Matrices with their eigen values and eigen vectors are natural models of resonance properties of these and many other oscillatory systems. 

Between integers and orthogonal (rational or irrational) square matrices of order n there is the following special correspondence: a prime number n corresponds to a simple or block-shaped ornament (pattern) of an orthogonal matrix with a given number of kinds of elements in it, which are called levels. The theory of mutual correspondence of numbers and extremal matrices (ie matrices with a maximal determinant) is developed, which simplifies the search for unknown matrices by means of the classification of matrices by types of numbers. The practical significance of this research direction is determined by the fact that the low-level matrices of the local maximum of the determinant are orthogonal and significant for the tasks of noise-immune encoding, compression and masking of video information [3]. Based on this theory and the variety of certain sequences of numbers (prime numbers p, powers of primes pm, where m is a natural number, pairs of close primes p and p+2, Mersenne numbers 2k–1, where k is a natural number, Fermat numbers 
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, where k is a non-negative integer, etc.), it is possible to dramatically accelerate the search for extremal matrices for practical problems [3, 4].

For example, a normalized Hadamard matrix H with entries +1 and –1 has so called core of odd order n, that can be circulant (kind of ornament) if n is prime number [3]. In the same time this core, when it is a strictly orthogonal matrix with rational or irrational elements, is transformed into the so-called Mersenne matrix in the case of changing the signs of the elements into opposite elements in it and taking these elements equal to a = 1, –b, b ≤ 1. Being some natural models of the world of integers, the matrices in question can also serve as models of the physical world. For example, a magnet is characterized by the total chaos of its elementary particles together with such a super object as lines of force of a magnetic field with some fixed and clear structure shown in Fig. 1 next to the matrix portrait with a circular pattern (ornament) of the Mersenne matrix.
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Fig. 1. Left: fixed structures of magnet fields. Right: a circulant Mersenne matrix

We place here a Mersenne matrix portrait, size 15. This circulant structure was found by mathematician M. Hall [12]. This matrix has so called pseudo-chaotic character of {a, –b}-sequences in every row of matrix together with fixed structure of circulant looking lines of main- and side-diagonals stuffed by only a or only –b entries. Thus, the Mersenne structure, being a characteristic of the object of the world of numbers – the number 15 – simultaneously serves as a model for the object of a complex physical world – the magnetic field. In addition, the two-cycle Mersenne structure, consisting of two phenomenological parts A and B, can serve as a model in many areas in which nature uses binary-oppositional structures, for example, in the physics of electromagnetic waves. It can also be used in the field of artificial intelligence systems for modeling rational and irrational thinking, pleasure and disgust emotions, chaotic regulation of reasonable activity, etc. It is a deep object for training specialists, and now we want to learn a lot more about ornamental matrices.

2. Primary Elements, Platonic Bodies and Numerical Background
Greek philosophers, building a geometric picture of the harmony of the universe, identified four regular polyhedra – icosahedron, octahedron, tetrahedron and cube –, which embodied in it four basic entities or "elements." Antique philosopher in Ancient Greece Plato was the founder of the Academyin Athens, the first institution of higher learning in the Western world, Fig. 2.
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Fig. 2. Left: Plato (Πλάτων) – sculpture in Delphi. Right: four nitrogenous bases of DNA - adenine A, guanine G, cytosine C and thymine T
Plato believed that the atoms of these elements – water, air, fire and earth – have the form of these bodies, which have since been called the Platonic bodies, Fig. 3. The fifth element, the dodecahedron, caused the greatest doubts. In this case Plato made a vague remark: "... the fifth element, god determined and used it as a model of Universe." In DNA, the genetic information is recorded using different sequences of four nitrogenous bases, which play the role of letters of the alphabet: adenine A, guanine G, cytosine C, and thymine T (uracil U is used in RNA instead of thymine T). This evokes some associations with the ancient doctrine of Plato.
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Fig. 3. Icosahedron, octahedron, tetrahedron, hexahedron (cube), dodecahedron
Orthogonal matrices can be hypothetically considered as the geometric concept inheriting an idea of primary elements. The separation (separability) and the necessity of the fifth element arises because of the multiplicity of the system of numbers 4 (even-odd and two states of multiplicity) and a special function of "1", which must play the dual role of 1 and 5 – in the same time is both the first element (in the tetrad) and the next element after 4.

Representatives of families of matrices are included in sequences with basic step 4, i.e. matrix families have orders of n = 4t–k, k≤3. It is worthwhile to distinguish even orders that are divisible by 4, and other even orders that are divisible by 2.

It should be noted that for n> 4, the integral Hadamard matrix cannot be cyclic [4]. Only binary rational or irrational Mersenne matrix of odd order with elements, which can be considered as characteristics of the natural number n, is cyclic.

In this case, we say that the Mersenne matrix M is only a part of the natural number n = 4t–1, containing its hidden structure.

Let us say about the ornamental conjecture. The structure of M is strong circulant (Fig. 1), if and only if n is Mersenne number, i.e. n=2k–1 (that gives name of all this sequence of orthogonal matrices), n is prime, n is product of two nearest prime numbers 3×5, 5×7, and so on. 

If we will take it more attentively, we will find some difference between circulant structures of Mersenne matrices of all these three types. Mersenne matrix, order 3 (or 7, 11, etc.), is different with Mersenne matrix, order 3×5=15 (or 5×7, 11×13, etc.) due orthogonal circulant matrices of the latest type cannot be skew. So we see here some exotic way to prove the fact that odd number n=4t–1 is prime by fact of existence of its matrix shadow: a skew circulant Mersenne matrix. Let us note, that number theory operates with numbers, not with matrices. This fact is situated on the bound between numbers and matrices. 

The applied side of projecting operators for modeling the phenomenological aspects of molecular genetic code systems was considered in [1].

3. Primary Elements as Coding in Biology
Science does not know why the genetic alphabet of DNA has been created by nature from just four letters, and why just these very simple molecules were chosen for the DNA-alphabet (out of millions of possible molecules). 

But science knows that these four molecules are interrelated by means of their symmetrical peculiarities into the united molecular ensemble with its three pairs of binary-oppositional traits:

(1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the standpoint of these binary-oppositional traits one can denote C = T = 0, A = G = 1. From the standpoint of these traits, any of the DNA-sequences are represented by a corresponding binary sequence. For example, GCATGAAGT is represented by 101011110;

(2) Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and T). From the standpoint of these traits one can designate A = C = 0, G = T = 1. Correspondingly, the same sequence, GCATGAAGT, is represented by another binary sequence, 100110011;

(3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds, respectively. From the standpoint of these binary traits, one can designate C = G = 0, A = T = 1. Correspondingly, the same sequence, GCATGAAGT, is read as 001101101.

Let us remember that similar numerical background was used in the famous periodical Mendeleev table of chemical element. There is well known correspondence between n=4t–1 and atom weights of alkalis and radioactive elements – 7 is Mersenne number and atom weight of Lithium 7Li, Uran 235U has atom weight 235=59×4–1. 

Orthogonal matrices with a fixed number of different (among themselves) elements – including the Hadamard matrices, the Mersenne matrices, the Fermat matrices, etc. and corresponding to the named numerical sequences – can serve as mathematical models in algebraic biology and bioinformatics.

Orthogonal matrices keep our attention as educational model of many appearances of nature: genetic codes, quasi-crystals, image-processing technologies and so on. Now we would like to tell about them by the more formal way then these obvious illustrations using pragmatic mathematic definitions and conjectures. 
4. Numerical Sequences, Relation to the Number Theory
Definition. A quasi-orthogonal matrix, order n, is a square matrix A, |aij|≤1, with maximum modulus 1 in each column (and row). It fulfills ATA = ω(n)I, with I the identity matrix and ω(n) the weight.  The entries values are called matrix “levels” [3]. 

A Hadamard matrix with entries {1, –1} is a two-level matrix. A Mersenne matrix with entries {1, –b}, 0<b<1 is also a two-level matrix. The Mersenne matrices are two-level quasi-orthogonal matrices defined by their second level –b,
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is a fundamental number, which plays a big role in the Hadamard matrix theory. The numerator n+1 is the order of the corresponding Hadamard matrix: every Mersenne matrix with the elements {1, –b} is the core of the normalized Hadamard matrix, taken with opposite signs (elements) to ensure the property: the quantity of the elements 1 exceeds the quantity of negative elements. 
Although Hadamard matrices and Hadamard matrices are not orthogonal matrices in the strict sense of this word, when ATA = I, we shall call them orthogonal for brevity. The name of Hadamard matrices of Sylvester type is associated with the fact that they generalize the calculation of quasi-orthogonal matrices of even orders n = 2k, k is an integer. Apart from Sylvester orders n=2k, the Mersenne numbers n=2k–1 embedded in the sequence of numbers 4t–1. Fermat numbers are embedded in the 4u2+1 sequence, that is, in its turn, embedded in the 4t+1 sequence. 

We have called quasi-orthogonal matrices of odd orders n=2k–1 and 
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 that have local maximum of determinant are Mersenne and Fermat matrices, respectively. 

The main rule exists to expand general matrices. We can say about Hadamard matrix of order 12, while 12 is not power of 2. The same, we can say about Mersenne matrix of order 11, while the number 11 does not belong to Mersenne numbers: it belongs to sequence including Mersenne numbers. The definition of Mersenne matrices can be expanded to orders 4t–1, and Fermat matrices – to “quadratic” orders 4u2+1. To note these matrices we fix the function of level, 
[image: image9.wmf]t

t

t

b

+

=

 for all expanded Mersenne matrices, b=1 is modulus level of Hadamard matrix. All numerical sequences have associated orthogonal matrices as parts of these numbers.

5. Golden Ratio Matrix G10
The Fibonacci numbers plays so big role in number theory and genetically inherited biological laws of phyllotaxis, that we should give some extraordinary example of matrices connected with them. 

Let us remember, the Fibonacci rule F(n)=F(n–1)+F(n–2) with initial conditions F(0)=F(1)=1 allows to  generate the Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, … . 

Among “Fibonacci-like” sequences there are Lucas numbers, which can be calculated with F(0)=2, F(1)=1. The resulting sequence 2, 1, 3, 4, 7, 11, 18, … looks quite different from the previous one, but the ratio of numbers converges toward the golden ratio, just as ratio of Fibonacci numbers themselves do. Any Fibonacci-like sequence can be expressed as a linear combination of both sequences. There are starting pairs for which we can get a ratio different from the golden ratio x,  x 2 = x + 1, but they are rare. 

The famous quadratic equation x2–x–1=0 has two roots 
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, the first is recognized as the golden ratio and from x 2 – (x1+ x2) x + x1x2 = 0 we have  x1x2  = – 1, so these two solutions are inversed by sign and value x2 = –1/ x1. Now we are interested in orthogonal matrices, which entries equal to the golden ratio inverse value x2 = –1/ x1= –0.618 …. 
Let us note that quadratic equation x 2+x–1 = 0 has inversed roots: if we discuss level modulus less than 1, so we will take as the main solution some golden level g=0.618…. <1. Now we will say continuous matrices, which are different from previously observed section matrices of the orthogonal (Hadamard) family, their level functions depend on more than one argument n. Therefore, for each n they generate not one, but a continuum of quasi-orthogonal matrices, described by a parametric dependence. This possibility follows from the interpretation of orthogonal or quasi-orthogonal matrix as a table of vector projections of the required orthogonal basis. We use the term “optimal” to denote matrices with maximal determinant. 

This allows us to get non-varying matrices for this continuum, known as orthogonal (Hadamard) matrices [5]. Sub-optimal solutions are known for Cretan matrices [13] with a small number of levels. Below we show a continuous matrix A10 :
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The upper module level from set of levels a≥b≥c≥g is a=1. The second and the third levels depend on the lower level g as b2+2(b–1)+2(g–c)+c2=0, c=1/(g+1). The colored matrix portrait represents the structure and levels of entries – every level has own color.  
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Fig. 4. Portrait of matrix A10 and histogram of moduli of its elements
The continuous matrix A10 (order 10) is a matrix with a low number of changeable levels and is notable by its solutions: two bounds (Fig. 5) of a continuum. One solution is the Belevitch matrix C10 since when b=c=a=1 we have g=0. We call the second solution with b=c=g<a=1 as the golden ratio matrix G10.
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Fig. 5. Belevitch С10 and Golden ratio matrix G10 with histogram of entries 
It is distinguished by the equation g2+g–1=0, well known by its irrational roots called the golden ratio in the Fibonacci numbers theory. In this case we are interested in the lower level g=0.618. that proportional to the inversion of 1.618...
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The value of modulus level g is constant. This implies, that golden ratio matrices and Hadamard-type matrices are two boundary solutions of a continuum matrix. Consequently, all golden ratio matrices are defined on orders n=10·2k. For them, as for all Hadamard family matrices, matrix G10 is the starting point for the sequence of matrices, found by iterations 
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Such orthogonal matrices of orders 5, 10 and values, which are proportional to 10 (10, 20, 40, 80, 160, 320, 640, .. ), are typical for image processing algorithms (usual photo sizes in a webcam or photo camera) [14]. Besides, number 10 is a foundation of geometrical figures (pentagrams) and it is connected with the golden ratio. Such theoretical approach of matrix and number theory tie was developed in our works [3, 4].
6. The advantage of Fermat Orders 
Odd orders, for which the upper formally attainable bound of determinants of maximum determinant matrices is known, are obtained from the Guido Barba's inequality [15]. It states that matrices A of orders n with modulus of entries <1 satisfy the inequality: |det(A)|2≤det((n–1)I+J)=(n–1)n–1(2n–1), where I=diag(1, 1, …, 1), J – a unity matrix. 
The maximum can be attained at orders, for which 2n–1 is a square. This necessary condition for extreme solutions follows the fact that optimal matrix entries are integers 1 and –1. We note that the Barba's bound is attainable for orders n=a2+b2, b=a+1 [3], nested in the same sequence 4t+1 that the Fermat numbers sequence is embedded. 

For Fermat numbers different from 5, 2n–1 it is not a square, which means that the Barba's bound is not attainable. It is an optimistic determinant estimation, certainly not pragmatic, because it is irrational. The non-attainability of the bound is not critical. 

Orders of matrices, which are described by certainly attainable integer values of the bound, are 5, 13, 25, 41, 61, 85, 113…, and the structures of every second one of these matrices of orders 13, 41, 85, … are significantly more complex than those of the others. There is no algorithm to construct these matrices – the existence of matrices of the listed orders is theoretically possible, but not all of them are known [3, 5].

Matrices of orders equal to Mersenne numbers and Fermat matrices of prime orders Fk=3, 5, 17, 257, 65537… have an advantage over all other matrices, because they have an algorithm for their construction, which is a modified Sylvester algorithm. At the same time an irrational Mersenne matrix, after its irrational elements are rounded to integer values, becomes equal to the {1, –1}-core of the normalized Hadamard matrix, and the core of Fermat matrix after rounding its irrational elements to {1, –1} becomes equal to the regular Hadamard matrix of order 4u2. 

Therefore, matrices of non-strict determinant optimums of orders equal to Mersenne numbers, are findable and can be used for indirect finding of Hadamard matrices that are strictly optimal by determinants. Based on the preliminary study we identified the following: skew-symmetric circulant Mersenne matrices correspond to prime Mersenne numbers; prime numbers and the symmetry types of circulant optimal and sub-optimal structures are synonyms of hyper quality of such different mathematical objects as numbers and matrices. 

The first person (if not legendary Pythagoras), which noticed the correlation of objects from different areas of mathematics, was Karl Friedrich Gauss. In 1796 he discovered a relation between prime numbers and geometric figures, after he inscribed a regular heptadecagon into a circle. Later he formulated a generic case about the relation between the number of sides of a regular polygon that is inscribed in a circle, and the Fermat prime numbers. 

The peculiarity of Fermat prime numbers allows us to formulate a conjecture about the relation of matrix orders and the maximums of their determinants. 

Conjecture. Among all matrices of sequences containing Fermat numbers, only quasi-orthogonal matrices of the local maximum of the determinant [3], whose orders are equal to the prime Fermat numbers Fk = 3, 5, 17, 257, 65537... and which are rounded in their elements to +1 and -1, give matrices of the global maximum of the determinant.
First three Fermat matrices of orders 3, 5 and 17, the latter of which is shown on Fig.1, can be checked [1], and validate the conjecture. It was noted earlier, that 2n–1 is not a square for Fermat numbers different from 5. 
The Barba bound B=(n–1)(n–1)/2(2n–1)1/2  is an irrational and unattainable number for rounded by entries (integer) Fermat matrices. However, this is just an optimistic upper-bound of the determinant, an abstract bound deducted in work [13], which may or may not be attained by an integer matrix. 

In case this optimistic and irrational bound B is unattainable, the pragmatic estimate differs from it by an irrational multiplier, multiplying by which makes the real bound integer-valued and attainable. Since the stricture of Fermat matrices is known to us, and the irrational multiplier of the bound can be found, the determinant of a Fermat matrix of order n = Fk  is estimated as Fk–1/(2Fk–1)1/2×B. 

As noted above, Fk–1/(2Fk–1)1/2  is an irrational number, in the general case. 
It gives a relative determinant value:  |det(A)|=(n–1)(n–1)/2(2n–1)1/2Fk–1/(2n–1)1/2 =(n–1)(n–1)/2Fk–1 (compared to bound B) when n =Fk  is an integer. This is an estimation of the attainable value of the integer matrix determinant.

The first Fermat number F0=3 is a starting one, there is no preliminary Fermat number, but this matrix, same with matrix with order 5, is known. In this matrix, the  –1 entries different from 1, stand on the diagonal. 

For order F1=5 we have an integer-valued determinant correction, equal to 1. This is an exception, when the Fermat matrix determinant attains the Barba's bound and we have F0/(2F1–1)1/2=3/91/2=1. The structure of the optimal matrix matches the starting one (for order 3), so these are two diagonal structures with simple forms. 

The first matrix that is different from them is a Fermat matrix of order 17. 

For F2=17 we have 2F2–1=33,which is not a square. A relative (accordingly Barba bound) determinant equals F1/(2F2–1)1/2=5/331/2=0,8704... It is an irrational number – a scale multiplier that is a correction to the unattainable Barba's bound B=168×331/2. Their product is an integer 5/331/2×B=5×168 = 21474836480 – determinant of the Fermat matrix of order 17.  This estimation is equal to 327680×216.

7. Determinant Maximum of a Matrix of Order 257

Fermat matrices can be found for orders, where Fermat numbers are nested, for example, at 37, 65, etc. The determinant of a matrix of order 37 is equal to 72×917×236. The estimation of the determinant of a determinant maximum matrix of the 65 order equals to 148×1631×264. The determinant of rounded by its entries Cretan matric of order 37 approximately equals to 7,22×1028 and is less than the estimate 8,25×1028 of the integer matrix of this order. 
For order 65 the determinant of a rounded Cretan matrix is 5,65×1058, whereas some better estimation gives the value of 5,81×1058 for an integer matrix of this order.

The information provided above confirms the conjecture – determinant maximum can be attained only for matrices of orders equal to prime Fermat numbers. On orders equal to prime and composite numbers of a sequence, which nests the Fermat sequence (without them), the statement is not true. An interesting analogy is noticeable here: according to the conjecture, and the Gauss theorem, regular polygons with 37 and 65 angles cannot be built using just a ruler and a pencil compass.

We believe that the similarity of hyper objects of mathematics and the details of the Gauss theorem can apply, among others, to determinant maximum matrices. Extremal matrices of orders 257 and 65537 are very difficult to calculate and check the values of their determinants (to match with determinants of Fermat matrices) due to the large number of possible permutations. However, we calculated the Fermat matrix of order 257 using a modified Sylvester algorithm. The image of symmetric matrix is shown on Fig. 6.
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Fig. 6. Image of Fermat matrix of order 257
Our conjecture says, the Fermat matrix of order 257 has a relative (accordingly Barba bound) determinant value F2/(2F3–1)1/2=0,7505… . This irrational number corresponds to the integer value of |det(A)|= (n–1)(n–1)/2Fk–1 = 256128×17 (approximately 3.06×10309). This estimation is absent in the literature, it is a new bound. The correspondence of symmetries to matrix orders was studied in works [16, 17].
8. Conclusions

Mathematical matrices play a great role in developing systems and methods of artificial intelligence, digital signals processing, noise-immune communication and study of bio-informational phenomena. But the world of matrices is a very wide and has many unknown valuable objects and properties, which should be revealed for useful applications in mentioned and other fields. Some of these kinds of matrices are described in our article. In particular they enrich of wide and perspective usage of matrices in education of specialists in different branches of science and technology. Deep relations between theory of matrices and theory of numbers exist, which can produce new ideas and unexpected heuristic solutions. We use the received results to create new digital devices of artificial intelligence and new approaches in studying a wide class of inherited genetic phenomena in living organisms.
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